Genetics and neurobiology of circadian clocks in mammals.

نویسندگان

  • Sandra M Siepka
  • Seung-Hee Yoo
  • Junghea Park
  • Choogon Lee
  • Joseph S Takahashi
چکیده

In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptional autoregulatory feedback loop. In mammals, there is a "core" set of circadian genes that form the primary negative feedback loop of the clock mechanism (Clock/Npas2, Bmal1, Per1, Per2, Cry1, Cry2, and CK1epsilon). A further dozen candidate genes have been identified and have additional roles in the circadian gene network such as the feedback loop involving Rev-erbalpha. Despite this remarkable progress, it is clear that a significant number of genes that strongly influence and regulate circadian rhythms in mammals remain to be discovered and identified. As part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen using a wide range of nervous system and behavioral phenotypes, we have identified a number of new circadian mutants in mice. Here, we describe a new short-period circadian mutant, part-time (prtm), which is caused by a loss-of-function mutation in the Cryptochrome1 (Cry1) gene. We also describe a long-period circadian mutant named Overtime (Ovtm). Positional cloning and genetic complementation reveal that Ovtm is encoded by the F-box protein FBXL3, a component of the SKP1-CUL1-F-box protein (SCF) E3 ubiquitin ligase complex. The Ovtm mutation causes an isoleucine to threonine (I364T) substitution leading to a loss of function in FBXL3 that interacts specifically with the CRYPTOCHROME (CRY) proteins. In Ovtm mice, expression of the PERIOD proteins PER1 and PER2 is reduced; however, the CRY proteins CRY1 and CRY2 are unchanged. The loss of FBXL3 function leads to a stabilization of the CRY proteins, which in turn leads to a global transcriptional repression of the Per and Cry genes. Thus, Fbxl3(Ovtm) defines a molecular link between CRY turnover and CLOCK/BMAL1-dependent circadian transcription to modulate circadian period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and biochemical mechanisms underlying circadian rhythms in vertebrates.

Circadian clocks organize neural processes, such as motor activities, into near 24-hour oscillations and adaptively synchronize these rhythms to the solar cycle. Recently, the first mammalian clock genes have been found. Unpredicted diversity in signaling pathways and clock-controlled gating of signals that modulate timekeeping has been discovered. A diffusible clock output has been found to co...

متن کامل

Mammalian Molecular Clocks

As a consequence of the Earth's rotation, almost all organisms experience day and night cycles within a 24-hr period. To adapt and synchronize biological rhythms to external daily cycles, organisms have evolved an internal time-keeping system. In mammals, the master circadian pacemaker residing in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus generates circadian rhythmicity and...

متن کامل

Circadian clock and microarrays: mammalian genome gets rhythm.

Circadian (daily) rhythms are found in most living organisms from cyanobacteria to mammals. They are generated by an internal ‘clock’ that is reset by external time cues and that regulates a variety of physiological functions through downstream target genes. Analysis of the mammalian transcriptome using DNA microarrays is now identifying hundreds of tissue-specific clock-controlled genes, which...

متن کامل

Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneratio...

متن کامل

Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock

A vast network of cellular circadian clocks regulates 24-hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light-res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cold Spring Harbor symposia on quantitative biology

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2007